
The decorator module

Author: Michele Simionato

E-mail: michele.simionato@gmail.com

Version: 3.0.0 (2008-12-14)

Requires: Python 2.4+

Download page: http://pypi.python.org/pypi/decorator

Installation: easy install decorator

License: BSD license

Contents

Introduction

Definitions

Statement of the problem

The solution

A trace decorator

decorator is a decorator

blocking

async

The FunctionMaker class

Getting the source code

Dealing with third party decorators

Caveats and limitations

Compatibility notes

LICENCE

1

Introduction

Python decorators are an interesting example of why syntactic sugar matters. In prin-
ciple, their introduction in Python 2.4 changed nothing, since they do not provide any
new functionality which was not already present in the language. In practice, their in-
troduction has significantly changed the way we structure our programs in Python. I
believe the change is for the best, and that decorators are a great idea since:

• decorators help reducing boilerplate code;

• decorators help separation of concerns;

• decorators enhance readability and maintenability;

• decorators are explicit.

Still, as of now, writing custom decorators correctly requires some experience and it
is not as easy as it could be. For instance, typical implementations of decorators involve
nested functions, and we all know that flat is better than nested.

The aim of the decorator module it to simplify the usage of decorators for the aver-
age programmer, and to popularize decorators by showing various non-trivial examples.
Of course, as all techniques, decorators can be abused (I have seen that) and you should
not try to solve every problem with a decorator, just because you can.

You may find the source code for all the examples discussed here in the documenta-

tion.py file, which contains this documentation in the form of doctests.

Definitions

Technically speaking, any Python object which can be called with one argument can be
used as a decorator. However, this definition is somewhat too large to be really useful.
It is more convenient to split the generic class of decorators in two subclasses:

• signature-preserving decorators, i.e. callable objects taking a function as input and
returning a function with the same signature as output;

• signature-changing decorators, i.e. decorators that change the signature of their
input function, or decorators returning non-callable objects.

Signature-changing decorators have their use: for instance the builtin classes stat-

icmethod and classmethod are in this group, since they take functions and return
descriptor objects which are not functions, nor callables.

However, signature-preserving decorators are more common and easier to reason
about; in particular signature-preserving decorators can be composed together whereas
other decorators in general cannot.

Writing signature-preserving decorators from scratch is not that obvious, especially
if one wants to define proper decorators that can accept functions with any signature.
A simple example will clarify the issue.

2

Statement of the problem

A very common use case for decorators is the memoization of functions. A memoize

decorator works by caching the result of the function call in a dictionary, so that the
next time the function is called with the same input parameters the result is retrieved
from the cache and not recomputed. There are many implementations of memoize in
http://www.python.org/moin/PythonDecoratorLibrary, but they do not preserve the
signature. A simple implementation for Python 2.5 could be the following (notice that
in general it is impossible to memoize correctly something that depends on non-hashable
arguments):

def memoize25(func):

func.cache = {}

def memoize(*args, **kw):

if kw: # frozenset is used to ensure hashability

key = args, frozenset(kw.iteritems())

else:

key = args

cache = func.cache

if key in cache:

return cache[key]

else:

cache[key] = result = func(*args, **kw)

return result

return functools.update_wrapper(memoize, func)

Here we used the functools.update wrapper utility, which has been added in Python
2.5 expressly to simplify the definition of decorators (in older versions of Python you
need to copy the function attributes __name__, __doc__, __module__ and __dict__

from the original function to the decorated function by hand).
The implementation above works in the sense that the decorator can accept functions

with generic signatures; unfortunately this implementation does not define a signature-
preserving decorator, since in general memoize25 returns a function with a different
signature from the original function.

Consider for instance the following case:

>>> @memoize25

... def f1(x):

... time.sleep(1) # simulate some long computation

... return x

Here the original function takes a single argument named x, but the decorated func-
tion takes any number of arguments and keyword arguments:

3

http://www.python.org/moin/PythonDecoratorLibrary
http://www.python.org/doc/2.5.2/lib/module-functools.html

>>> from inspect import getargspec

>>> print getargspec(f1)

([], ’args’, ’kw’, None)

This means that introspection tools such as pydoc will give wrong informations about
the signature of f1. This is pretty bad: pydoc will tell you that the function accepts a
generic signature *args, **kw, but when you try to call the function with more than an
argument, you will get an error:

>>> f1(0, 1)

Traceback (most recent call last):

...

TypeError: f1() takes exactly 1 argument (2 given)

The solution

The solution is to provide a generic factory of generators, which hides the complex-
ity of making signature-preserving decorators from the application programmer. The
decorator function in the decorator module is such a factory:

>>> from decorator import decorator

decorator takes two arguments, a caller function describing the functionality of the
decorator and a function to be decorated; it returns the decorated function. The caller
function must have signature (f, *args, **kw) and it must call the original function
f with arguments args and kw, implementing the wanted capability, i.e. memoization
in this case:

def _memoize(func, *args, **kw):

if kw: # frozenset is used to ensure hashability

key = args, frozenset(kw.iteritems())

else:

key = args

cache = func.cache # attributed added by memoize

if key in cache:

return cache[key]

else:

cache[key] = result = func(*args, **kw)

return result

At this point you can define your decorator as follows:

def memoize(f):

f.cache = {}

return decorator(_memoize, f)

4

The difference with respect to the Python 2.5 approach, which is based on nested
functions, is that the decorator module forces you to lift the inner function at the outer
level (flat is better than nested). Moreover, you are forced to pass explicitly the function
you want to decorate to the caller function.

Here is a test of usage:

>>> @memoize

... def heavy_computation():

... time.sleep(2)

... return "done"

>>> print heavy_computation() # the first time it will take 2 seconds

done

>>> print heavy_computation() # the second time it will be instantaneous

done

The signature of heavy_computation is the one you would expect:

>>> print getargspec(heavy_computation)

([], None, None, None)

A trace decorator

As an additional example, here is how you can define a trivial trace decorator, which
prints a message everytime the traced function is called:

def _trace(f, *args, **kw):

print "calling %s with args %s, %s" % (f.__name__, args, kw)

return f(*args, **kw)

def trace(f):

return decorator(_trace, f)

Here is an example of usage:

>>> @trace

... def f1(x):

... pass

It is immediate to verify that f1 works

>>> f1(0)

calling f1 with args (0,), {}

5

and it that it has the correct signature:

>>> print getargspec(f1)

([’x’], None, None, None)

The same decorator works with functions of any signature:

>>> @trace

... def f(x, y=1, z=2, *args, **kw):

... pass

>>> f(0, 3)

calling f with args (0, 3, 2), {}

>>> print getargspec(f)

([’x’, ’y’, ’z’], ’args’, ’kw’, (1, 2))

That includes even functions with exotic signatures like the following:

>>> @trace

... def exotic_signature((x, y)=(1,2)): return x+y

>>> print getargspec(exotic_signature)

([[’x’, ’y’]], None, None, ((1, 2),))

>>> exotic_signature()

calling exotic_signature with args ((1, 2),), {}

3

Notice that the support for exotic signatures has been deprecated in Python 2.6 and
removed in Python 3.0.

decorator is a decorator

It may be annoying to write a caller function (like the _trace function above) and
then a trivial wrapper (def trace(f): return decorator(_trace, f)) every time.
For this reason, the decorator module provides an easy shortcut to convert the caller
function into a signature-preserving decorator: you can just call decorator with a
single argument. In our example you can just write trace = decorator(_trace).
The decorator function can also be used as a signature-changing decorator, just as
classmethod and staticmethod. However, classmethod and staticmethod return
generic objects which are not callable, while decorator returns signature-preserving
decorators, i.e. functions of a single argument. For instance, you can write directly

6

>>> @decorator

... def trace(f, *args, **kw):

... print "calling %s with args %s, %s" % (f.func_name, args, kw)

... return f(*args, **kw)

and now trace will be a decorator. You can easily check that the signature has
changed:

>>> print getargspec(trace)

([’f’], None, None, None)

Therefore now trace can be used as a decorator and the following will work:

>>> @trace

... def func(): pass

>>> func()

calling func with args (), {}

For the rest of this document, I will discuss examples of useful decorators built on
top of decorator.

blocking

Sometimes one has to deal with blocking resources, such as stdin, and sometimes it
is best to have back a “busy” message than to block everything. This behavior can be
implemented with a suitable decorator:

def blocking(not_avail="Not Available"):

def _blocking(f, *args, **kw):

if not hasattr(f, "thread"): # no thread running

def set_result(): f.result = f(*args, **kw)

f.thread = threading.Thread(None, set_result)

f.thread.start()

return not_avail

elif f.thread.isAlive():

return not_avail

else: # the thread is ended, return the stored result

del f.thread

return f.result

return decorator(_blocking)

(notice that without the help of decorator, an additional level of nesting would have
been needed). This is actually an example of a one-parameter family of decorators.

Functions decorated with blocking will return a busy message if the resource is
unavailable, and the intended result if the resource is available. For instance:

7

>>> @blocking("Please wait ...")

... def read_data():

... time.sleep(3) # simulate a blocking resource

... return "some data"

>>> print read_data() # data is not available yet

Please wait ...

>>> time.sleep(1)

>>> print read_data() # data is not available yet

Please wait ...

>>> time.sleep(1)

>>> print read_data() # data is not available yet

Please wait ...

>>> time.sleep(1.1) # after 3.1 seconds, data is available

>>> print read_data()

some data

async

We have just seen an examples of a simple decorator factory, implemented as a function
returning a decorator. For more complex situations, it is more convenient to implement
decorator factories as classes returning callable objects that can be used as signature-
preserving decorators. The suggested pattern to do that is to introduce a helper method
call(self, func, *args, **kw) and to call it in the __call__(self, func) method.

As an example, here I show a decorator which is able to convert a blocking function
into an asynchronous function. The function, when called, is executed in a separate
thread. Moreover, it is possible to set three callbacks on_success, on_failure and
on_closing, to specify how to manage the function call. The implementation is the
following:

def on_success(result): # default implementation

"Called on the result of the function"

return result

def on_failure(exc_info): # default implementation

"Called if the function fails"

pass

def on_closing(): # default implementation

"Called at the end, both in case of success and failure"

pass

8

class Async(object):

"""

A decorator converting blocking functions into asynchronous

functions, by using threads or processes. Examples:

async_with_threads = Async(threading.Thread)

async_with_processes = Async(multiprocessing.Process)

"""

def __init__(self, threadfactory):

self.threadfactory = threadfactory

def __call__(self, func, on_success=on_success,

on_failure=on_failure, on_closing=on_closing):

every decorated function has its own independent thread counter

func.counter = itertools.count(1)

func.on_success = on_success

func.on_failure = on_failure

func.on_closing = on_closing

return decorator(self.call, func)

def call(self, func, *args, **kw):

def func_wrapper():

try:

result = func(*args, **kw)

except:

func.on_failure(sys.exc_info())

else:

return func.on_success(result)

finally:

func.on_closing()

name = ’%s-%s’ % (func.__name__, func.counter.next())

thread = self.threadfactory(None, func_wrapper, name)

thread.start()

return thread

The decorated function returns the current execution thread, which can be stored
and checked later, for instance to verify that the thread .isAlive().

Here is an example of usage. Suppose one wants to write some data to an external
resource which can be accessed by a single user at once (for instance a printer). Then
the access to the writing function must be locked. Here is a minimalistic example:

>>> async = Async(threading.Thread)

9

>>> datalist = [] # for simplicity the written data are stored into a list.

>>> @async

... def write(data):

... # append data to the datalist by locking

... with threading.Lock():

... time.sleep(1) # emulate some long running operation

... datalist.append(data)

... # other operations not requiring a lock here

Each call to write will create a new writer thread, but there will be no synchroniza-
tion problems since write is locked.

>>> write("data1")

<Thread(write-1, started)>

>>> time.sleep(.1) # wait a bit, so we are sure data2 is written after data1

>>> write("data2")

<Thread(write-2, started)>

>>> time.sleep(2) # wait for the writers to complete

>>> print datalist

[’data1’, ’data2’]

The FunctionMaker class

You may wonder about how the functionality of the decorator module is implemented.
The basic building block is a FunctionMaker class which is able to generate on the fly
functions with a given name and signature from a function template passed as a string.
Generally speaking, you should not need to resort to FunctionMaker when writing ordi-
nary decorators, but it is handy in some circumstances. We will see an example in two
paragraphs, when implementing a custom decorator factory (decorator_apply).

Notice that while I do not have plans to change or remove the functionality provided
in the FunctionMaker class, I do not guarantee that it will stay unchanged forever. For
instance, right now I am using the traditional string interpolation syntax for function
templates, but Python 2.6 and Python 3.0 provide a newer interpolation syntax and I
may use the new syntax in the future. On the other hand, the functionality provided by
decorator has been there from version 0.1 and it is guaranteed to stay there forever.

FunctionMaker takes the name and the signature (as a string) of a function in input,
or a whole function. Then, it creates a new function (actually a closure) from a function
template (the function template must begin with def with no comments before and you
cannot use a lambda) via its .make method: the name and the signature of the resulting
function are determinated by the specified name and signature. For instance, here is an
example of how to restrict the signature of a function:

10

>>> def f(*args, **kw): # a function with a generic signature

... print args, kw

>>> fun = FunctionMaker(name="f1", signature="a,b")

>>> f1 = fun.make(’’’\

... def %(name)s(%(signature)s):

... f(%(signature)s)’’’, dict(f=f))

...

>>> f1(1,2)

(1, 2) {}

The dictionary passed in this example (dict(f=f)) is the execution environment:
FunctionMaker.make actually returns a closure, and the original function f is a variable
in the closure environment. FunctionMaker.make also accepts keyword arguments and
such arguments are attached to the resulting function. This is useful if you want to set
some function attributes, for instance the docstring __doc__.

For debugging/introspection purposes it may be useful to see the source code of the
generated function; to do that, just pass the flag addsource=True and a __source__

attribute will be added to the decorated function:

>>> f1 = fun.make(’’’\

... def %(name)s(%(signature)s):

... f(%(signature)s)’’’, dict(f=f), addsource=True)

...

>>> print f1.__source__

def f1(a,b):

f(a,b)

<BLANKLINE>

Getting the source code

Internally FunctionMaker.make uses exec to generate the decorated function. There-
fore inspect.getsource will not work for decorated functions. That means that the
usual ’??’ trick in IPython will give you the (right on the spot) message Dynamically

generated function. No source code available. In the past I have considered
this acceptable, since inspect.getsource does not really work even with regular dec-
orators. In that case inspect.getsource gives you the wrapper source code which is
probably not what you want:

def identity_dec(func):

def wrapper(*args, **kw):

return func(*args, **kw)

return wrapper

11

@identity_dec

def example(): pass

>>> print getsource(example)

def wrapper(*args, **kw):

return func(*args, **kw)

<BLANKLINE>

(see bug report 1764286 for an explanation of what is happening). Unfortunately
the bug is still there, even in Python 2.6 and 3.0. There is however a workaround. The
decorator module adds an attribute .undecorated to the decorated function, containing
a reference to the original function. The easy way to get the source code is to call
inspect.getsource on the undecorated function:

>>> print getsource(factorial.undecorated)

@tail_recursive

def factorial(n, acc=1):

"The good old factorial"

if n == 0: return acc

return factorial(n-1, n*acc)

<BLANKLINE>

Dealing with third party decorators

Sometimes you find on the net some cool decorator that you would like to include in
your code. However, more often than not the cool decorator is not signature-preserving.
Therefore you may want an easy way to upgrade third party decorators to signature-
preserving decorators without having to rewrite them in terms of decorator. You can
use a FunctionMaker to implement that functionality as follows:

def decorator_apply(dec, func):

"Decorate a function using a signature-non-preserving decorator"

fun = FunctionMaker(func)

src = ’’’def %(name)s(%(signature)s):

return decorated(%(signature)s)’’’

return fun.make(src, dict(decorated=dec(func)), undecorated=func)

decorator_apply sets the attribute .undecorated of the generated function to the
original function, so that you can get the right source code.

Notice that I am not providing this functionality in the decorator module directly
since I think it is best to rewrite the decorator rather than adding an additional level
of indirection. However, practicality beats purity, so you can add decorator_apply to
your toolbox and use it if you need to.

12

http://bugs.python.org/issue1764286

In order to give an example of usage of decorator_apply, I will show a pretty
slick decorator that converts a tail-recursive function in an iterative function. I have
shamelessly stolen the basic idea from Kay Schluehr’s recipe in the Python Cookbook,
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691.

class TailRecursive(object):

"""

tail_recursive decorator based on Kay Schluehr’s recipe

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691

"""

CONTINUE = object() # sentinel

def __init__(self, func):

self.func = func

self.firstcall = True

def __call__(self, *args, **kwd):

try:

if self.firstcall: # start looping

self.firstcall = False

while True:

result = self.func(*args, **kwd)

if result is self.CONTINUE: # update arguments

args, kwd = self.argskwd

else: # last call

break

else: # return the arguments of the tail call

self.argskwd = args, kwd

return self.CONTINUE

except: # reset and re-raise

self.firstcall = True

raise

else: # reset and exit

self.firstcall = True

return result

Here the decorator is implemented as a class returning callable objects.

def tail_recursive(func):

return decorator_apply(TailRecursive, func)

Here is how you apply the upgraded decorator to the good old factorial:

@tail_recursive

def factorial(n, acc=1):

13

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691

"The good old factorial"

if n == 0: return acc

return factorial(n-1, n*acc)

>>> print factorial(4)

24

This decorator is pretty impressive, and should give you some food for your mind ;)
Notice that there is no recursion limit now, and you can easily compute factorial(1001)
or larger without filling the stack frame. Notice also that the decorator will not work on
functions which are not tail recursive, such as the following

def fact(n): # this is not tail-recursive

if n == 0: return 1

return n * fact(n-1)

(reminder: a function is tail recursive if it either returns a value without making a
recursive call, or returns directly the result of a recursive call).

Caveats and limitations

The first thing you should be aware of, it the fact that decorators have a performance
penalty. The worse case is shown by the following example:

$ cat performance.sh

python -m timeit -s "

from decorator import decorator

@decorator

def do_nothing(func, *args, **kw):

return func(*args, **kw)

@do_nothing

def f():

pass

" "f()"

python -m timeit -s "

def f():

pass

" "f()"

On my MacBook, using the do_nothing decorator instead of the plain function is
more than three times slower:

14

$ bash performance.sh

1000000 loops, best of 3: 0.995 usec per loop

1000000 loops, best of 3: 0.273 usec per loop

It should be noted that a real life function would probably do something more useful
than f here, and therefore in real life the performance penalty could be completely
negligible. As always, the only way to know if there is a penalty in your specific use case
is to measure it.

You should be aware that decorators will make your tracebacks longer and more
difficult to understand. Consider this example:

>>> @trace

... def f():

... 1/0

Calling f() will give you a ZeroDivisionError, but since the function is decorated
the traceback will be longer:

>>> f()

calling f with args (), {}

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<string>", line 2, in f

File "documentation.py", line 799, in _trace

return f(*args, **kw)

File "<stdin>", line 3, in f

ZeroDivisionError: integer division or modulo by zero

You see here the inner call to the decorator trace, which calls f(*args, **kw), and
a reference to File "<string>", line 2, in f. This latter reference is due to the
fact that internally the decorator module uses exec to generate the decorated function.
Notice that exec is not responsibile for the performance penalty, since is the called only
once at function decoration time, and not every time the decorated function is called.

At present, there is no clean way to avoid exec. A clean solution would require to
change the CPython implementation of functions and add an hook to make it possible
to change their signature directly. That could happen in future versions of Python (see
PEP 362) and then the decorator module would become obsolete. However, at present,
even in Python 3.0 it is impossible to change the function signature directly, therefore
the decorator module is still useful. Actually, this is one of the main reasons why I am
releasing version 3.0.

In the present implementation, decorators generated by decorator can only be used
on user-defined Python functions or methods, not on generic callable objects, nor on
built-in functions, due to limitations of the inspect module in the standard library.

There is a restriction on the names of the arguments: for instance, if try to call an
argument _call_ or _func_ you will get a NameError:

15

http://www.python.org/dev/peps/pep-0362

>>> @trace

... def f(_func_): print f

...

Traceback (most recent call last):

...

NameError: _func_ is overridden in

def f(_func_):

return _call_(_func_, _func_)

Finally, the implementation is such that the decorated function contains a copy of
the original function dictionary (vars(decorated_f) is not vars(f)):

>>> def f(): pass # the original function

>>> f.attr1 = "something" # setting an attribute

>>> f.attr2 = "something else" # setting another attribute

>>> traced_f = trace(f) # the decorated function

>>> traced_f.attr1

’something’

>>> traced_f.attr2 = "something different" # setting attr

>>> f.attr2 # the original attribute did not change

’something else’

Compatibility notes

Version 3.0 is a complete rewrite of the original implementation. It is mostly compatible
with the past, a part for a few differences.

First of all, the utilites get_info and new_wrapper, available in the 2.X versions,
have been deprecated and they will be removed in the future. For the moment, using
them raises a DeprecationWarning. Incidentally, the functionality has been imple-
mented through a decorator which makes a good example for this documentation:

@decorator

def deprecated(func, *args, **kw):

"A decorator for deprecated functions"

warnings.warn(

(’Calling the deprecated function %r\n’

’Downgrade to decorator 2.3 if you want to use this functionality’)

% func.__name__, DeprecationWarning, stacklevel=3)

return func(*args, **kw)

16

get_info has been removed since it was little used and since it had to be changed
anyway to work with Python 3.0; new_wrapper has been removed since it was useless:
its major use case (converting signature changing decorators to signature preserving
decorators) has been subsumed by decorator_apply and the other use case can be
managed with the FunctionMaker.

Finally decorator cannot be used as a class decorator and the functionality intro-
duced in version 2.3 has been removed. That means that in order to define decorator
factories with classes you need to define the __call__ method explicitly (no magic any-
more).

All these changes should not cause any trouble, since they were all rarely used fea-
tures. Should you have any trouble, you can always downgrade to the 2.3 version.

The examples shown here have been tested with Python 2.5. Python 2.4 is also
supported - of course the examples requiring the with statement will not work there.
Python 2.6 works fine, but if you run the examples here in the interactive interpreter you
will notice a couple of minor differences since getargspec returns an ArgSpec named-
tuple instead of a regular tuple, and the string representation of a thread object returns
a thread identifier number. That means that running the file documentation.py under
Python 2.5 will a few errors, but they are not serious. Python 3.0 is kind of supported
too. Simply run the script 2to3 on the module decorator.py and you will get a version
of the code running with Python 3.0 (at least, I did some simple checks and it seemed to
work). However there is no support for function annotations yet since it seems premature
at this moment (most people are still using Python 2.5).

LICENCE

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

Redistributions in bytecode form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in

the documentation and/or other materials provided with the

distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

17

http://www.phyast.pitt.edu/~micheles/python/documentation.html#class-decorators-and-decorator-factories
http://www.phyast.pitt.edu/~micheles/python/documentation.html#class-decorators-and-decorator-factories
http://www.python.org/dev/peps/pep-3107/

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

If you use this software and you are happy with it, consider sending me a note, just
to gratify my ego. On the other hand, if you use this software and you are unhappy with
it, send me a patch!

18

	Contents
	Introduction
	Definitions
	Statement of the problem
	The solution
	A trace decorator
	decorator is a decorator
	blocking
	async
	The FunctionMaker class
	Getting the source code
	Dealing with third party decorators
	Caveats and limitations
	Compatibility notes
	LICENCE

